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w 1. We cons ider  the p lane  fully e s t ab l i shed  motion of a v i s cous ly  f ree - f lowing  med ium in a s l i t  with a 
length L (0 -<x -<L)  and a width 2a ( - a  - - y ~ a ) ,  a t  whose ends the un i fo rmly  d is t r ibu ted  p r e s s u r e s  pl and P2 
a r e  given.  In the absence  of m a s s  f o r ce s ,  the equat ions for  the s t r e s s e s  have  the fo rm 

OctxlOx + Oo~,~/Oy = O, Oa~,ylOx + &~ulOy = 0. ( 1 . 1 )  

I t  i s  a s s u m e d  that  the molion t akes  p lace  only along a s l i t  along the x axis .  Then f r o m  the equat ion of 
continuity i t  fol lows tha t  Vx i s  a function of the coordinate  y .  F o r  a v i scous ly  f ree - f lowing  med ium,  the c o m -  
ponents  of  the s t r e s s  t en s o r  in the plane case  a r e  connected by the re la t ionsh ip  [1, 2] 

((~. _ %)n _{_ 4o~ = sin ~ q) (~x + % -~ 2~ctg (pk si-5 "~ "~yJ , (1.2) 

where  ~ is  the angle  of  in te rna l  f r ic t ion;  k is  the coeff ic ient  of adhesion; ~ is  the v i scos i ty .  In the case  of  
i so t rop i c  de format ion ,  the ma in  components  of the t enso r  of  the s t r e s s e s  and the r a t e s  of deformat ion  coin-  
t ide ,  which leads  to the dependence [1] 

~= - -  % ~ a~, + - ~ ' ] 1  ax " (1.3) 

Since 0Vx/3X= 0, f r o m  (1.3) follows 

~x ---- ~y = P. (1.4) 

Relationships (1.1), (1.2), and (1.4) make up a closed system of equations for determination of the un- 
known stresses and the velocity of the flow Vx. By virtue of symmetry with respect to the axis y=0, we shall 
seek  the solution in the region y > 0. 

Taking account  of  equal i ty  (1.4), f r o m  (1.2) we obtain an expres s ion  for  the tangenl2al s t r e s s  

axy = p sia qv -t- k cos ~ - -  ~O~=/Oy. (1.5) 

Solving Eq. (1.5) s imul taneous ly  with the equat ions of mot ion (1.i) and the condition of  adhesion a t  the wall  of  
the sl i t ,  we find the functions of the n o r m a l  and tangent ia l  s t r e s s e s a n d  the ve loc i t i e s  of the flow Vx in the 
f o r m  

p = Co(x - -  y sin ~) ~ C1; (1.6) 
Co cos ~ v~ : ~ (~ - a) (~, - C~); (1.7) 

(~x~ = [Co( x - -  Y sin q)) -t- C1] sia ~, + k cos r - -  Co r - -  (a + C..)/2], (1.8) 

whore  C0, C1, C 2 a r e  some  constants ,  which will  be d e t e r m i n e d  below. 

F r o m  the s y m m e t r y  of the p r o b l e m  and the continuity of  the tangential  s t r e s s e s  i t  follows that  the 
mot ion of a v i s cous ly  f ree - f lowing  m ed i um  in a l imi t ingly  s t r e s s e d  s ta te  cannot take place  over  the whole 
width of the sl i t .  In ac tual i ty ,  in the con t r a ry  case ,  with y = O ,  ~xy=0 ,  which cont rad ic t s  equali ty (1.8). F r o m  
th is  i t  fo l lows ttmt, at  the cen te r  of  the sl i t ,  an  e las t i c  core  with a width 2y 0 i s  fo rmed,  moving like a solid 
body. At  the boundary of the e las t i c  core ,  the de r iva t ive  of the ve loc i ty  3Vx/0y r e v e r t s  to ze ro .  Then f r o m  
(1.7) it fol lows that  

2yo -- a q- C2, (1.9) 
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I t  i s  obvious that, with a uni formly distr ibuted p r e s s u r e  over  the ends in the initial and final sections 
of  the slit, there  must  be formed t ransi t ional  regions of the formation of lhe elast ic  core.  

To determine the unknown constants entering into the solution (1.6)-(1.8) we make the following a s sump-  
t ions.  The fr ict ion fo rces  in the sect ions of the formation of the liquid core,  as well as  the dimensions of 
these sections,  can be neglected in compar ison with the length of the slit. The mean value of the component 
of the s t r e s s  ~x in the boundary c ros s  sect ions of  the region of the forming one-dimensional  flow in the 
e las t ic  core  and in the zone of the motion of the v iscous ly  free-f lowing medium is  equal to the p r e s s u r e s  Pt 
and P2 at  the ends of the slit. 

Then, f r o m  (1.6}, it follows that 

C o :  p 2 - - L P t , C 1 = p 1 + C o ~ s i n %  

We determine the width of the e las t ic  core  f rom the condition of the equaliW of the s t r e s se s  at the 
boundary of the core  Y0 and the difference of the forces  applied at the ends :  

L 

(pl--p2)yo:S(~xy,y=y.dx=[Pl-~P-------~ L Pl--P~ ( a - - g o ) s i n c ~ ] s i n ( p + k c o s T . L  . 
o 2 

F r o m  this las t  equality we finally obtain 

Y0 = [(Pl + P~) L - -  (Pt - -  P2) asinq~] s i n  qD + 2kcos  q~ �9 L ( 1 . 1 0 )  
(P~ - -  P2) ( i  + cos ~ q~) 

Thus, the width of the elast ic  core  with a given length of the slit depends not only on the p res su re  drop 
but also on the values  of the p r e s s u r e s  at the end of the slit. Here there is a considerable  difference in the 
flow of v i scous ly  free-f lowing media  with internal  friction, compared  to the motion of v i scous  and viscoplas t ic  
liquids. With given p r e s s u r e s  Pl and p~, the equality (1.10) enables us to determine the maximal  value of the 
length of the s l i t  L, for which the natural  inequality Y0 ---a is satisfied: 

L ~ 2a (Pl - -  P~) 
(Pt + P2) sin q~ + 2k cos r " 

For  na r row sl i ts ,  assuming a / L  <<i1, we obtain 

2 fp~ sin (p + k cos ~) L L sin (p _~ (1.11) 
Y0 = 1 + cds~ r (Pl - -  P2) (i + cos 2 ~) " 

F r o m  relat ionships  (1.10), (1.11) it follows that, with smaU p r e s s u r e  drops o r  with sufficiently long 
sl i ts ,  there  is no motion of the v iscous ly  free-f lowing medium and the tube is closed. This la t ter  c i r c u m -  
stance is  explained by the l inear  dependence of the tangential s t r e s se s  on the coordinate x. Knowing the width 
of the e las t ic  core ,  f rom (1.7), (1.9) we can obtain an express ion for the mass  flow rate  Q of the v iscous ly  
free-f lowing medium through unit width of the slit: 

O = 2  v x ( y ) d y + v x ( y o ) Y o  = P~-LP----Jcos~r ~- 

The case of the flow of v iscous  and viscoplas t ic  liquids is obtained f rom the solution found with 9 = 0 and k = 0; 
ga = 0, respect ively.  

w 2. In the p resence  of mass  forces  of gravi ty  the equations of motion in the case of radial  symmet ry  
in cyl indrical  coordinates  have the form [3] 

O(~z/OZ -~- OC;rz,lOr -I- 6~/r = y, 
O(~r/Or + OorzlOz + (Or --  (~o)tr = 0, (2.1) 

where ~/ is the specific weight of the medium. 

Assuming that only the coordinate v z differs f rom zero,  f rom the equation of continuity we obtain 
OVz/aZ = 0.. Then the equation of a l imit ingly s t r e s sed  state and the relat ionship connecting the t ensors  of the 
s t r e s s e s  and the deformat ion r a t e s  a re  wri t ten in the following manner  [1, 3]: 

2~ o%~ 
(~z -- ~r) 2 + 4~2~ : s in~ ~ (Tr + ~z + 2kctg ~ -- - -  "~-r] ; (2.2) sin q~ 
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0% -k 0 o  
2(rv z 0-'7 Oz 

~ -- % 20v.--~ z (2.3) 
Oz 

F r o m  Eq. (2.3) and the equality aVz/OX = 0 it follows that  ~r =az.  We shall seek the solution of the problem in 
the form 

(rr = ~z ---- (~e = P. (2.4) 

In this case, the component of the s t r e ss  g0 sat isf ies  the inequality proposed in [3]: 
! 

(Tr+Oz(t-- " (Yr + ( 7 z  2 sm q9) < (r o < "---T--- ( t  -4- sin (p). 

Taking account  of (2.4), for the tangential s t r e s s  a rz  f rom (2.2) we obtain 

g~ = p sin q~ -F k cos qD --  ~tOvJOr. (2.5) 

With the condition of adhesion of the v iscous ly  free-f lowing medium at the wall of the tube, the solution of the 
sys tem of Eqs.  (2.1), (2.4), and (2.5) has  the form 

P = P2 = const, 
v= = C~ In (r/R) ~- (F/~t)(r - -  t ~ ) -  (y/49)(r ~ --  R2), (2.6) 

~,z = 7r/2 - -  FCIh:, 

where F=p2 sin go+ k cos go. With go--* 0, the solution (2.6), in distinction from the plane case, does not go over 
into the solution for a v iscoplas t ic  medium [4], since, with go = 0, there  is  a change in the type of the start ing 
sys tem of equations. Since, in the region of a limitingly s t ressed  state, the p re s su re  p is constant, at one end 
of the tube there  may  not be a t ransi t ional  reg ion  of the formation of an elast ic  core.  

Let  us  examine the case of the absence of a transit ional  section at the outlet of the tube. Then the 
constant P2 is equal to the p r e s s u r e  in the external medium with z = L. In the inlet section we neglect  the 
tangential s t r e s s e s  in the elast ic  region in comparison with the fr ict ion forces  at  the walls of the tube and 
assume that the mean p r e s s u r e  in the initial c ross  section of the core  is equal to the p r e s s u r e  Pl at the inlet 
of the tube. We denote the radius of the elast ic  core  by r 0. 

At the boundary r0, the relat ionship 

OVz [ Ct F 
w l , = , .  = 0 

is satisfied, f rom which we obtain 

C z = - -  r__0 F ~- ~r02. 

We find the value of r 0 f rom the condition of the equality of all the fo rces  acting on the core of the flow 

(Pc - -  P~) nr~ + n r 2 7 L  = 2 n r o F L .  

We finally obtain 

ro = 2F/[ (p i  - -  p2)/L A- y]. (2.7) 

F r o m  the la t ter  equality it can be seen that, in spite of the different fo rms  of the solution, the expression 
for the boundary of the core  r 0 with go = 0 coincides with the case  of a viseoplast ic  liquid [4]. 

In the derivation of relationship (2.5) for the tangential s t r e s se s  qrz  it was assumed that the flow takes 
place in the positive di rect ion of the z axis and that the velocity of the flow r i s e s  toward the center  of the tube, 
i .e. ,  O V z / 3 r - 0  with r0---r--<R. 

Then, taking account  of Eq. (2.7), f rom the expression for the veloci ty of the flow (2.6) we obtain 

a v = _  p ro ~ ro 2 v ~ r ~ O  
a-;- - - -  ~ - - ;  + ~ ' 7  -F-~ - z~ 

We divide both par t s  of the la t ter  inequality by the expression 1 - r 0 / r :  

F -~< (7/2)(r + r0). 
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The inequali ty obtained must  be sat isf ied for  the whole region of the flow of the v iscous ly  free-f lowing medium 
with r 0 ~ r - < R  and consequently 

F ~ vr0. (2.8) 

Substituting into (2.8) the express ion  for  the radius of the e las t ic  core ,  we obtain 

(Pl - -  p O / L  • 7. (2.9) 

Thus ,  fully es tabl ished motion of a v iscous ly  f ree-f lowing medium along a ve r t i ca l  round tube is possible 
only in the case where the p r e s s u r e  gradient  set up by the external  forces  at the ends does not exceed the 
specif ic  weight of the medium.  F rom inequality (2.9), specif ical ly,  i t  follows that, in tile absence of mass  
fo rces  (~/= 0), motion without breaking down the condition of adhesion at the wall is completely impossible~ i .e. ,  
under  the action of the fo rces  applied at the ends, a v iscously  free-f lowing medium is  e i ther  at r e s t  (there is 
closing of the tube) or  i t  moves  with slippage at  the wails. 

We obtain a second limiting inequali ty f rom express ion  (2~ and the condition r 0 ( r: 

(Pl - -  p~)/L > (2F --  7 R ) / R .  (2.i0) 

We t r a n s f o r m  the r ight-hand par t  of (2.10) in the following manner:  

(2F - -  y R ) / R  = (2~zRF - -  ~ R 2 7 ) / ~ R  2. 

The express ion  FI= 2~RF r e p r e s e n t s  the possible  fr ict ion force at the wall of the tube without taking account 
of the viscous  component,  and F 2 =7rR27 is the weight of the medium arr iv ing at a unit of length. If  F 1 < F2, 
inequali ty (2.1.0) is  sat isf ied for  any a r b i t r a r y  p r e s s u r e  and only the sole limiting re la t ionship  remains  (2.9). 
In the con t r a ry  case,  the simultaneous sat isfact ion of inequali t ies (2.9) and (2.10) is required ,  which follows 
a two-sided l imitat ion on the length of the tube: 

(P~ - -  P~.)/? ~.~ L < (pl  - -  p2) / (2F/R - - 7 ) .  

It  can be shown that the la t te r  inequality is  not contradic tory;  i .e. ,  

(P~ - -  P~-)/7 < (P~ - -  p~) / (2F/R - -  7). (2.11) 

Actually,  f rom (2.8) we obtain 

7 > F / R  > 2 F / R  - -  u 

f rom which follows the val idi ty of the inequality (2.11) 

In conclusion we note that, for  the case  of nonisotropic deformat ion [1], the quali tat ive p ic ture  of the 
flow of a v i scous ly  f ree- f lowing medium in a tube does not change. The authors  wish to exp re s s  the i r  thanks 
to A. Kh. Mirzadzhanzade for his evaluation of the work and his useful observat ions .  
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